广东初中数学知识点

等钟马发 初数知识点总结 、基本知识 、数与代数a、数与式:1、理数理数:①整数→整数/0/负整数②数→数/负数 数轴:①画条水平直线直线取点表示0(原点)选取某度作单位度规定直线向右向向数轴②任 等钟马发 初数知识点总结 、基本知识

、数与代数a、数与式:1、理数理数:①整数→整数/0/负整数②数→数/负数

数轴:①画条水平直线直线取点表示0(原点)选取某度作单位度规定直线向右向向数轴②任何理数都用数轴点表示③两数符号同我称其数另外数相反数称两数互相反数数轴表示互相反数两点位于原点两侧并且与原点距离相等④数轴两点表示数右边总比左边数于0负数于0数于负数

绝值:①数轴数所应点与原点距离叫做该数绝值②数绝值本身、负数绝值相反数、0绝值0两负数比较绝值反

理数运算:加:①同号相加取相同符号绝值相加②异号相加绝值相等0;绝值等取绝值较数符号并用较绝值减较绝值③数与0相加变

减:减数等于加数相反数

乘:①两数相乘同号异号负绝值相乘②任何数与0相乘0③乘积1两理数互倒数

除:①除数等于乘数倒数②0能作除数

乘:求n相同数a积运算叫做乘乘结叫幂a叫底数n叫数

混合顺序:先算乘再算乘除算加减括号要先算括号

2、实数 理数:限循环数叫理数

平根:①数x平等于a数x叫做a算术平根②数x平等于a数x叫做a平根③数2平根/0平根0/负数没平根④求数a平根运算叫做平其a叫做数

立根:①数x立等于a数x叫做a立根②数立根数、0立根0、负数立根负数③求数a立根运算叫立其a叫做数

实数:①实数理数理数②实数范围内相反数倒数绝值意义理数范围内相反数倒数绝值意义完全③每实数都数轴点表示

3、代数式

代数式:单独数或者字母代数式

合并同类项:①所含字母相同并且相同字母指数相同项叫做同类项②同类项合并项叫做合并同类项③合并同类项我同类项系数相加字母字母指数变

4、整式与式

整式:①数与字母乘积代数式叫单项式几单项式叫项式单项式项式统称整式②单项式所字母指数叫做单项式数③项式数高项数叫做项式数

整式运算:加减运算遇括号先括号再合并同类项

幂运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除

整式乘:①单项式与单项式相乘系数相同字母幂别相乘其余字母连同指数变作积式②单项式与项式相乘根据配律用单项式乘项式每项再所积相加③项式与项式相乘先用项式每项乘另外项式每项再所积相加

公式两条:平差公式/完全平公式

整式除:①单项式相除系数同底数幂别相除作商式;于除式含字母则连同指数起作商式②项式除单项式先项式每项别除单项式再所商相加

解式:项式化几整式积形式种变化叫做项式解式

:提公式、运用公式、组解、十字相乘

式:①整式a除整式b除式b含母式于任何式母0②式与母同乘或除同等于0整式式值变

式运算:

乘:相乘积作积母相乘积作积母

除:除式等于乘式倒数

加减:①同母式相加减母变相加减②异母式先通化同母式再加减

式程:①母含未知数程叫式程②使程母0解称原程增根

b、程与等式 1、程与程组

元程:①程含未知数并且未知数指数1程叫元程②等式两边同加或减或乘或除(0)代数式所结仍等式

解元程步骤:母移项合并同类项未知数系数化1

二元程:含两未知数并且所含未知数项数都1程叫做二元程

二元程组:两二元程组程组叫做二元程组

适合二元程组未知数值叫做二元程解

二元程组各程公共解叫做二元程解

解二元程组:代入消元/加减消元

元二程:未知数并且未知数项高系数2程

1)元二程二函数关系

家已经二函数(即抛物线)深解像解图象表示等等其实元二程用二函数表示其实元二程二函数特殊情况y0候构元二程平面直角坐标系表示元二程二函数图象与x轴交点该程解

2)元二程解

家知道二函数顶点式(-b/2a,4ac-b2/4a)家要记住重要面已经说元二程二函数部所自解利用求所元程解

(1)配

利用配使程变完全平公式用直接平求解

(2)解式

提取公式套用公式十字相乘解元二程候利用点程化几乘积形式解

(3)公式

解元二程万能程根x1={-b+√[b2-4ac)]}/2ax2={-b-√[b2-4ac)]}/2a

3)解元二程步骤: (1)配步骤:

先数项移程右边再二项系数化1再同加1项系数半平配完全平公式

(2)解式步骤:

程右边化0看看否能用提取公式公式(指解式公式)或十字相乘化乘积形式

(3)公式

元二程各系数别代入二项系数a项系数b数项系数c

4)韦达定理

利用韦达定理解韦达定理元二程二根=-b/a二根积=c/a

表示x1+x2=-b/a,x1x2=c/a利用韦达定理求元二程各系数题目用

5)元程根情况

利用根判别式解根判别式书面写△读作diao ta△=b2-4ac3种情况:

i△>0元二程2相等实数根;

ii△=0元二程2相同实数根;

iii△<0元二程没实数根(高知道2虚数根)

2、等式与等式组

等式:①用符号〉=〈号连接式叫等式②等式两边都加或减同整式等号向变③等式两边都乘或者除数等号向变④等式两边都乘或除同负数等号向相反

等式解集:①能使等式立未知数值叫做等式解②含未知数等式所解组等式解集③求等式解集程叫做解等式

元等式:左右两边都整式含未知数且未知数高数1等式叫元等式

元等式组:①关于同未知数几元等式合起组元等式组②元等式组各等式解集公共部叫做元等式组解集③求等式组解集程叫做解等式组

元等式符号向:

元等式像等式等号变随着加或乘运算改变

等式加同数(或加数)等式符号改向;例:a>b,a+c>b+c

等式减同数(或加负数)等式符号改向;例:a>ba-c>b-c

等式乘同数等号改向;例:a>ba*c>b*c(c>0)

等式乘同负数等号改向;例:a>ba*c<b*c(c<0)

等式乘0等号改等号

所题目要求乘数要看看题否现元等式现等式乘数等0否则等式立;

3、函数 变量:变量自变量

用图象表示变量间关系通用水平向数轴点自变量用竖直向数轴点表示变量

函数:①若两变量xy间关系式表示y=kx+b(b数k等于0)形式则称yx函数②b=0称yx比例函数

函数图象:①函数自变量x与应变量y值别作点横坐标与纵坐标直角坐标系内描应点所些点组图形叫做该函数图象②比例函数y=kx图象经原点条直线③函数k〈0b〈o则经234象限;k〈0b〉0则经124象限;k〉0b〈0则经134象限;k〉0b〉0则经123象限④k〉0y值随x值增增x〈0y值随x值增减少

二空间与图形 a、图形认识 1、点线面

点线面:①图形由点线面构②面与面相交线线与线相交点③点线线面面体

展与折叠:①棱柱任何相邻两面交线叫做棱侧棱相邻两侧面交线棱柱所侧棱相等棱柱底面形状相同侧面形状都体②n棱柱底面图形n条边棱柱

截几何体:用平面截图形截面叫做截面

视图:主视图左视图俯视图

边形:由些同条直线线段依首尾相连组封闭图形

弧、扇形:①由条弧经条弧端点两条半径所组图形叫扇形②圆割若干扇形

2、角

线:①线段两端点②线段向向限延形射线射线端点③线段两端限延形直线直线没端点④经两点且条直线

比较短:①两点间所连线线段短②两点间线段度叫做两点间距离

角度量与表示:①角由两条具公共端点射线组两条射线公共端点角顶点②度1/601/60秒

角比较:①角看由条射线绕着端点旋转②条射线绕着端点旋转终边始边条直线所角叫做平角始边继续旋转始边重合所角叫做周角③角顶点引条射线角两相等角条射线叫做角平线

平行:①同平面内相交两条直线叫做平行线②经直线外点且条直线与条直线平行③两条直线都与第3条直线平行两条直线互相平行

垂直:①两条直线相交直角两条直线互相垂直②互相垂直两条直线交点叫做垂足③平面内点且条直线与已知直线垂直

垂直平线:垂直平条线段直线叫垂直平线

垂直平线垂直平定线段能射线或直线根据射线直线限延关再看面垂直平线条直线所画垂直平线候确定2点(关于画面讲)定要线段穿2点

垂直平线定理:

性质定理:垂直平线点该线段两端点距离相等;

判定定理:线段2端点距离相等点线段垂直平线

角平线:角平射线叫该角角平线

定义几要点要注意角角平线条射线线段直线题目现直线角平线称轴才用直线涉及轨迹问题角角平线角两边距离相等点

性质定理:角平线点该角两边距离相等

判定定理:角两边距离相等点该角角平线

形:组邻边相等矩形形

性质:形具平行四边形、菱形、矩形切性质

判定:1、角线相等菱形2、邻边相等矩形

二、基本定理 1、两点且条直线 2、两点间线段短

3、同角或等角补角相等

4、同角或等角余角相等

5、点且条直线已知直线垂直

6、直线外点与直线各点连接所线段垂线段短

7、平行公理 经直线外点且条直线与条直线平行

8、两条直线都第三条直线平行两条直线互相平行

9、同位角相等两直线平行

10、内错角相等两直线平行

11、同旁内角互补两直线平行

12、两直线平行同位角相等

13、两直线平行内错角相等

14、两直线平行同旁内角互补

15、定理 三角形两边于第三边

16、推论 三角形两边差于第三边

17、三角形内角定理 三角形三内角等于180°

18、推论1 直角三角形两锐角互余

19、推论2 三角形外角等于相邻两内角

20、推论3 三角形外角于任何相邻内角

21、全等三角形应边、应角相等

22、边角边公理(sas) 两边夹角应相等两三角形全等

23、角边角公理( asa)两角夹边应相等 两三角形全等

24、推论(aas) 两角其角边应相等两三角形全等

25、边边边公理(sss) 三边应相等两三角形全等

26、斜边、直角边公理(hl) 斜边条直角边应相等两直角三角形全等

27、定理1 角平线点角两边距离相等

28、定理2 角两边距离相同点角平线

29、角平线角两边距离相等所点集合

30、等腰三角形性质定理 等腰三角形两底角相等 (即等边等角)

31、推论1 等腰三角形顶角平线平底边并且垂直于底边

32、等腰三角形顶角平线、底边线底边高互相重合

33、推论3 等边三角形各角都相等并且每角都等于60°

34、等腰三角形判定定理 三角形两角相等两角所边相等(等角等边)

35、推论1 三角都相等三角形等边三角形

36、推论 2 角等于60°等腰三角形等边三角形

37、直角三角形锐角等于30°所直角边等于斜边半

38、直角三角形斜边线等于斜边半

39、定理 线段垂直平线点条线段两端点距离相等

40、逆定理 条线段两端点距离相等点条线段垂直平线

41、线段垂直平线看作线段两端点距离相等所点集合

42、定理1 关于某条直线称两图形全等形

43、定理 2 两图形关于某直线称称轴应点连线垂直平线

44、定理3 两图形关于某直线称应线段或延线相交交点称轴

45、逆定理 两图形应点连线同条直线垂直平两图形关于条直线称

46、勾股定理 直角三角形两直角边a、b平、等于斜边c平即a2+b2=c2

47、勾股定理逆定理 三角形三边a、b、c关系a2+b2=c2三角形直角三角形

48、定理 四边形内角等于360°

49、四边形外角等于360°

50、边形内角定理 n边形内角等于(n-2)×180°

51、推论 任意边外角等于360°

52、平行四边形性质定理1 平行四边形角相等

53、平行四边形性质定理2 平行四边形边相等

54、推论 夹两条平行线间平行线段相等

55、平行四边形性质定理3 平行四边形角线互相平

56、平行四边形判定定理1 两组角别相等四边形平行四边形

57、平行四边形判定定理2 两组边别相等四边 形平行四边形

58、平行四边形判定定理3 角线互相平四边形平行四边形

59、平行四边形判定定理4 组边平行相等四边形平行四边形

60、矩形性质定理1 矩形四角都直角

61、矩形性质定理2 矩形角线相等

62、矩形判定定理1 三角直角四边形矩形

63、矩形判定定理2 角线相等平行四边形矩形

64、菱形性质定理1 菱形四条边都相等

65、菱形性质定理2 菱形角线互相垂直并且每条角线平组角

66、菱形面积=角线乘积半即s=(a×b)÷2

67、菱形判定定理1 四边都相等四边形菱形

68、菱形判定定理2 角线互相垂直平行四边形菱形

69、形性质定理1 形四角都直角四条边都相等

70、形性质定理2形两条角线相等并且互相垂直平每条角线平组角

71、定理1 关于称两图形全等

72、定理2 关于称两图形称点连线都经称并且称平

73、逆定理 两图形应点连线都经某点并且点平两图形关于点称

74、等腰梯形性质定理 等腰梯形同底两角相等

75、等腰梯形两条角线相等

76、等腰梯形判定定理 同底两角相等梯 形等腰梯形

77、角线相等梯形等腰梯形

78、平行线等线段定理 组平行线条直线截线段相等其直线截线段相等

79、推论1 经梯形腰点与底平行直线必平另腰

80、推论2 经三角形边点与另边平行直线必平第三边

81、三角形位线定理 三角形位线平行于第三边并且等于半

82、梯形位线定理 梯形位线平行于两底并且等于两底半 l=(a+b)÷2 s=l×h

83、(1)比例基本性质:a:b=c:d,ad=bc ad=bc ,a:b=c:d

84、(2)合比性质:a/b=c/d,(a±b)/b=(c±d)/d

85、(3)等比性质:a/b=c/d=…=m/n(b+d+…+n≠0),

(a+c+…+m)/(b+d+…+n)=a/b

86、平行线线段比例定理 三条平行线截两条直线所应线段比例

87、推论 平行于三角形边直线截其两边(或两边延线)所应线段比例

88、定理 条直线截三角形两边(或两边延线)所应线段比例条直线平行于三角形第三边

89、平行于三角形边并且其两边相交直线 所截三角形三边与原三角形三边应比例

90、定理 平行于三角形边直线其两边(或两边延线)相交所构三角形与原三角形相似

91、相似三角形判定定理1 两角应相等两三角形相似(asa)

92、直角三角形斜边高两直角三角形原三角形相似

93、判定定理2 两边应比例且夹角相等两三角形相似(sas)

94、判定定理3 三边应比例两三角形相似(sss)

95、定理 直角三角形斜边条直角边与另直角三角形斜边条直角边应比例两直角三角形相似

96、性质定理1 相似三角形应高比应线比与应角平线比都等于相似比

97、性质定理2 相似三角形周比等于相似比

98、性质定理3 相似三角形面积比等于相似比平

99、任意锐角弦值等于余角余弦值任意锐角余弦值等于余角弦值

100、任意锐角切值等于余角余切值任意锐角余切值等于余角切值

101、圆定点距离等于定点集合

102、圆内部看作圆距离于半径点集合

103、圆外部看作圆距离于半径点集合

104、同圆或等圆半径相等

105、定点距离等于定点轨迹定点圆定半径圆

106、已知线段两端点距离相等点轨迹着条线段垂直平线

107、已知角两边距离相等点轨迹角平线

108、两条平行线距离相等点轨迹两条平行线平行且距离相等条直线

109、定理 同直线三点确定圆

110、垂径定理 垂直于弦直径平条弦并且平弦所两条弧

111、推论1

①平弦(直径)直径垂直于弦并且平弦所两条弧

②弦垂直平线经圆并且平弦所两条弧

③平弦所条弧直径垂直平弦并且平弦所另条弧

112、推论2 圆两条平行弦所夹弧相等

113、圆圆称称图形

114、定理 同圆或等圆相等圆角所弧相等所弦相等所弦弦距相等

115、推论 同圆或等圆两圆角、两条弧、两条弦或两弦弦距组量相等所应其余各组量都相等

116、定理 条弧所圆周角等于所圆角半

117、推论1 同弧或等弧所圆周角相等;同圆或等圆相等圆周角所弧相等

118、推论2 半圆(或直径)所圆周角直角;90°圆周角所弦直径

119、推论3 三角形边线等于边半三角形直角三角形

120、定理 圆内接四边形角互补并且任何外角都等于内角

121、①直线l⊙o相交 d

②直线l⊙o相切 d=r

③直线l⊙o相离 d>r

122、切线判定定理 经半径外端并且垂直于条半径直线圆切线

123、切线性质定理 圆切线垂直于经切点半径

124、推论1 经圆且垂直于切线直线必经切点

125、推论2 经切点且垂直于切线直线必经圆

126、切线定理 圆外点引圆两条切线切线相等圆点连线平两条切线夹角

127、圆外切四边形两组边相等

128、弦切角定理 弦切角等于所夹弧圆周角

129、推论 两弦切角所夹弧相等两弦切角相等

130、相交弦定理 圆内两条相交弦交点两条线段积相等

131、推论 弦与直径垂直相交弦半直径所两条线段比例项

132、切割线定理 圆外点引圆切线割线切线点割线与圆交点两条线段比例项

133、推论 圆外点引圆两条割线点每条 割线与圆交点两条线段积相等

134、两圆相切切点定连线

■初中数学知识点

初中数学知识点总结 一、基本知识

一、数与代数a、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

b、方程与不等式 1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

i当△>0时,一元二次方程有2个不相等的实数根;

ii当△=0时,一元二次方程有2个相同的实数根;

iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>b,a+c>b+c

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>b,a-c>b-c

在不等式中,如果乘以同一个正数,不等号不改向;例如:a>b,a*c>b*c(c>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:a>b,a*c<b*c(c<0)

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

二空间与图形 a、图形的认识 1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理 三角形两边的和大于第三边

16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于180°

18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理( asa)有两角和它们的夹边对应相等的 两个三角形全等

24、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(sss) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1 三个角都相等的三角形是等边三角形

36、推论 2 有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角

61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即s=(a×b)÷2

67、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94、判定定理3 三边对应成比例,两三角形相似(sss)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2 相似三角形周长的比等于相似比

98、性质定理3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理 不在同一直线上的三点确定一个圆。

110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2 圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理 一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理 圆的切线垂直于经过切点的半径

124、推论1 经过圆心且垂直于切线的直线必经过切点

125、推论2 经过切点且垂直于切线的直线必经过圆心

126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理 弦切角等于它所夹的弧对的圆周角

129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离 d>r+r ②两圆外切 d=r+r③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含 dr)

136、定理 相交两圆的连心线垂直平分两圆的公共弦

137、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积sn=pnrn/2 p表示正n边形的周长

142、正三角形面积√3a/4 a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:l=n兀r/180

145、扇形面积公式:s扇形=n兀r^2/360=lr/2

146、内公切线长= d-(r-r) 外公切线长= d-(r+r)

■初中数学知识点总结

证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等

证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

*11.利用半圆上的圆周角是直角。

证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明 角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

*5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

*4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

证明四点共圆

*1.对角互补的四边形的顶点共圆。

*2.外角等于内对角的四边形内接于圆。

*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

*4.同斜边的直角三角形的顶点共圆。

*5.到顶点距离相等的各点共圆。

(“*”代表重要)

请问、这种符合麽。 呵呵、希望能够帮到你

■初中数学知识点总结

1过两点有且只有一条直线    2 两点之间线段最短 3 同角或等角的补角相等    4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理  经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行   10 内错角相等,两直线平行 11 同旁内角互补,两直线平行   12两直线平行,同位角相等 13 两直线平行,内错角相等   14 两直线平行,同旁内角互补 15 定理  三角形两边的和大于第三边 16 推论  三角形两边的差小于第三边 17 三角形内角和定理  三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理  有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理  有两角和它们的夹边对应相等的两个三角形全等 24 推论  有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理  有三边对应相等的两个三角形全等 26 斜边、直角边公理  有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理  等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理  如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理  线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理  和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理  直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理  如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理  四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理  n边形的内角的和等于(n-2)×180° 51推论  任意多边的外角和等于360° 52平行四边形性质定理1  平行四边形的对角相等 53平行四边形性质定理2  平行四边形的对边相等 54推论  夹在两条平行线间的平行线段相等 55平行四边形性质定理3  平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1  矩形的四个角都是直角 61矩形性质定理2  矩形的对角线相等 62矩形判定定理1  有三个角是直角的四边形是矩形 63矩形判定定理2  对角线相等的平行四边形是矩形 64菱形性质定理1  菱形的四条边都相等 65菱形性质定理2  菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1  四边都相等的四边形是菱形 68菱形判定定理2  对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1  关于中心对称的两个图形是全等的 72定理2  关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理  等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理  在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理  如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1  经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2   经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理  三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理  梯形的中位线平行于两底,并且等于两底和的 一半    l=(a+b)÷2      s=l×h 83 (1)比例的基本性质  如果a:b=c:d,那么ad=bc  如果ad=bc,那么a:b=c:d 84 (2)合比性质  如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质  如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理  三条平行线截两条直线,所得的对应线段成比例     87 推论  平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理  如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1  两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2  两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3  三边对应成比例,两三角形相似(sss) 95 定理  如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1  相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2  相似三角形周长的比等于相似比 98 性质定理3  相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理  不在同一直线上的三个点确定一条直线 110垂径定理  垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧    ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧    ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2  圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论  在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理  一条弧所对的圆周角等于它所对的圆心角的一半 117推论1  同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2  半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119推论3  如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理  圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121①直线l和⊙o相交   d﹤r ②直线l和⊙o相切   d=r ③直线l和⊙o相离   d﹥r 122切线的判定定理  经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理  圆的切线垂直于经过切点的半径 124推论1  经过圆心且垂直于切线的直线必经过切点 125推论2  经过切点且垂直于切线的直线必经过圆心 126切线长定理  从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理  弦切角等于它所夹的弧对的圆周角 129推论  如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理  圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论  如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133推论  从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离   d﹥r+r           ②两圆外切   d=r+r   ③两圆相交   r-r﹤d﹤r+r(r﹥r) ④两圆内切   d=r-r(r﹥r)       ⑤两圆内含d﹤r-r(r﹥r) 136定理  相交两圆的连心线垂直平分两圆的公共弦 137定理  把圆分成n(n≥3):   ⑴依次连结各分点所得的多边形是这个圆的内接正n边形   ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理  任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的内角都等于(n-2)×180°/n 140定理  正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积sn=pnrn/2    p表示正n边形的周长 142正三角形面积√3a/4      a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:l=n∏r/180 145扇形面积公式:s扇形=n∏r/360=lr/2 146内公切线长= d-(r-r)      外公切线长= d-(r+r)

■初中数学知识点总结

初中数学知识点总结 一、基本知识

一、数与代数a、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

b、方程与不等式 1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

i当△>0时,一元二次方程有2个不相等的实数根;

ii当△=0时,一元二次方程有2个相同的实数根;

iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>b,a+c>b+c

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>b,a-c>b-c

在不等式中,如果乘以同一个正数,不等号不改向;例如:a>b,a*c>b*c(c>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:a>b,a*c<b*c(c<0)

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

二空间与图形 a、图形的认识 1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理 三角形两边的和大于第三边

16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于180°

18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理( asa)有两角和它们的夹边对应相等的 两个三角形全等

24、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(sss) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1 三个角都相等的三角形是等边三角形

36、推论 2 有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角

61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即s=(a×b)÷2

67、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94、判定定理3 三边对应成比例,两三角形相似(sss)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2 相似三角形周长的比等于相似比

98、性质定理3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理 不在同一直线上的三点确定一个圆。

110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2 圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理 一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理 圆的切线垂直于经过切点的半径

124、推论1 经过圆心且垂直于切线的直线必经过切点

125、推论2 经过切点且垂直于切线的直线必经过圆心

126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理 弦切角等于它所夹的弧对的圆周角

129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离 d>r+r ②两圆外切 d=r+r③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含 dr)

136、定理 相交两圆的连心线垂直平分两圆的公共弦

137、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积sn=pnrn/2 p表示正n边形的周长

142、正三角形面积√3a/4 a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:l=n兀r/180

145、扇形面积公式:s扇形=n兀r^2/360=lr/2

146、内公切线长= d-(r-r) 外公切线长= d-(r+r)

■初中数学知识点归纳

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

因式分解与乘法

和差化积是乘法,乘法本身是运算。

积化和差是分解,因式分解非运算。

因式分解

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解

一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。

【注】 一提(提公因式)二套(套公式)

因式分解

一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。

对症下药稳又准,连乘结果是基础。

二次三项式的因式分解

先想完全平方式,十字相乘是其次。

两种方法行不通,求根分解去尝试。

比和比例

两数相除也叫比,两比相等叫比例。

外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。

同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。

前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。

前项和比后项和,比值不变叫等比。

解比例

外项积等内项积,列出方程并解之。

求比值

由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。

消元也是好办法,殊途同归会变通。

正比例与反比例

商定变量成正比,积定变量成反比。

正比例与反比例

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例

四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

解一元一次不等式

先去分母再括号,移项合并同类项。

系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。

解一元一次不等式组

大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。

同向取两边,异向取中间。

中间无元素,无解便出现。

幼儿园小鬼当家,(同小相对取较小)

敬老院以老为荣,(同大就要取较大)

军营里没老没少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

解一元二次不等式

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

a正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

用平方差公式因式分解

异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。

用完全平方公式因式分解

两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。

分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。

一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。

分成两底差平方,两端为正倍积负。

两边若负中间正,底差平方相反数。

用公式法解一元二次方程

要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根可套公式,没有实根要告之。

用常规配方法解一元二次方程

左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

该种解法叫配方,解方程时多练习。

用间接配方法解一元二次方程

已知未知先分离,因式分解是其次。

调整系数等互反,和差积套恒等式。

完全平方等常数,间接配方显优势

【注】 恒等式 解一元二次方程

方程没有一次项,直接开方最理想。

如果缺少常数项,因式分解没商量。

b、c相等都为零,等根是零不要忘。

b、c同时不为零,因式分解或配方,

也可直接套公式,因题而异择良方。

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量, 有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质

正比函数图直线,经过 和原点。

k正一三负二四,变化趋势记心间。

k正左低右边高,同大同小向爬山。

k负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过 点。

k正左低右边高,越走越高向爬山。

k负左高右边低,越来越低很明显。

k称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过 点。

k正一三负二四,两轴是它渐近线。

k正左高右边低,一三象限滑下山。

k负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

a定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

a定开口及大小,开口向上是正数。

绝对值大开口小,开口向下a负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线 直线、射线与线段

直线射线与线段,形状相似有关联。

直线长短不确定,可向两方无限延。

射线仅有一端点,反向延长成直线。

线段定长两端点,双向延伸变直线。

两点定线是共性,组成图形最常见。

一点出发两射线,组成图形叫做角。

共线反向是平角,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

直平之间是钝角,平周之间叫优角。

互余两角和直角,和是平角互补角。

一点出发两射线,组成图形叫做角。

平角反向且共线,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

钝角界于直平间,平周之间叫优角。

和为直角叫互余,互为补角和平角。

证等积或比例线段

等积或比例线段,多种途径可以证。

证等积要改等比,对照图形看特征。

共点共线线相交,平行截比把题证。

三点定型十分像,想法来把相似证。

图形明显不相似,等线段比替换证。

换后结论能成立,原来命题即得证。

实在不行用面积,射影角分线也成。

只要学习肯登攀,手脑并用无不胜。

解无理方程

一无一有各一边,两无也要放两边。

乘方根号无踪迹,方程可解无负担。

两无一有相对难,两次乘方也好办。

特殊情况去换元,得解验根是必然。

解分式方程

先约后乘公分母,整式方程转化出。

特殊情况可换元,去掉分母是出路。

求得解后要验根,原留增舍别含糊。

列方程解应用题

列方程解应用题,审设列解双检答。

审题弄清已未知,设元直间两办法。

列表画图造方程,解方程时守章法。

检验准且合题意,问求同一才作答。

添加辅助线

学习几何体会深,成败也许一线牵。

分散条件要集中,常要添加辅助线。

畏惧心理不要有,其次要把观念变。

熟能生巧有规律,真知灼见靠实践。

图中已知有中线,倍长中线把线连。

旋转构造全等形,等线段角可代换。

多条中线连中点,便可得到中位线。

倘若知角平分线,既可两边作垂线。

也可沿线去翻折,全等图形立呈现。

角分线若加垂线,等腰三角形可见。

角分线加平行线,等线段角位置变。

已知线段中垂线,连接两端等线段。

辅助线必画虚线,便与原图联系看。

两点间距离公式

同轴两点求距离,大减小数就为之。

与轴等距两个点,间距求法亦如此。

平面任意两个点,横纵标差先求值。

差方相加开平方,距离公式要牢记。

矩形的判定

任意一个四边形,三个直角成矩形;

对角线等互平分,四边形它是矩形。

已知平行四边形,一个直角叫矩形;

两对角线若相等,理所当然为矩形。

菱形的判定

任意一个四边形,四边相等成菱形;

四边形的对角线,垂直互分是菱形。

已知平行四边形,邻边相等叫菱形;

两对角线若垂直,顺理成章为菱形。

祝你学习进步!

■初中数学知识点罗列

考试重点:有理数---无理数、整式---分式、几何(角,三角形,圆)、函数、统计、等式---不等式

■初中数学知识点总结

初中数学概念及定义总结 三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点半径 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 推论 从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相

■求初中数学知识点总结

初中数学知识点总结 一、基本知识

一、数与代数a、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

b、方程与不等式 1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

i当△>0时,一元二次方程有2个不相等的实数根;

ii当△=0时,一元二次方程有2个相同的实数根;

iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>b,a+c>b+c

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>b,a-c>b-c

在不等式中,如果乘以同一个正数,不等号不改向;例如:a>b,a*c>b*c(c>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:a>b,a*c<b*c(c<0)

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

二空间与图形 a、图形的认识 1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理 三角形两边的和大于第三边

16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于180°

18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理( asa)有两角和它们的夹边对应相等的 两个三角形全等

24、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(sss) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1 三个角都相等的三角形是等边三角形

36、推论 2 有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角

61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即s=(a×b)÷2

67、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94、判定定理3 三边对应成比例,两三角形相似(sss)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2 相似三角形周长的比等于相似比

98、性质定理3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理 不在同一直线上的三点确定一个圆。

110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2 圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理 一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理 圆的切线垂直于经过切点的半径

124、推论1 经过圆心且垂直于切线的直线必经过切点

125、推论2 经过切点且垂直于切线的直线必经过圆心

126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理 弦切角等于它所夹的弧对的圆周角

129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离 d>r+r ②两圆外切 d=r+r③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含 dr)

136、定理 相交两圆的连心线垂直平分两圆的公共弦

137、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积sn=pnrn/2 p表示正n边形的周长

142、正三角形面积√3a/4 a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:l=n兀r/180

145、扇形面积公式:s扇形=n兀r^2/360=lr/2

146、内公切线长= d-(r-r) 外公切线长= d-(r+r)

  • 共2页
  • 1

相关阅读