初中数学函数公式大全

一次函数y=kx+b (k为任意不为零常数,b为任意常数)正比例函数 y=kx(k为常数,且k≠0)反比例函数 y=k/x (k为常数,k≠0)二次函数y=ax^2;+bx+c(a≠0,a、b、c为常

一次函数     y=kx+b (k为任意不为零常数,b为任意常数)正比例函数 y=kx(k为常数,且k≠0)反比例函数 y=k/x (k为常数,k≠0) 二次函数    y=ax^2;+bx+c(a≠0,a、b、c为常数) 顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k                                                           交点式(与x轴):y=a(x-x1)(x-x2)

■初中数学图形公式

锐角三角函数的定义

(1)正弦函数(sine): (2)余弦函数(cosine):

        

(3)正切函数(tangent): (4)余切函数(cotangent):

                 (5)正割函数(secant): (6)余割函数(cosecant):

              

30º,45º及60º的特别角三角函数值  

函数  角度θ sinθ cosθ tanθ cotθ secθ cscθ

2 1 1 2 任意角三角函数的定义 令,则

    

0º, 90º, 180º及 270º的六个三角函数值

角度θ

函数 90º 180º 270º 90º 180º 270º

sin θ 0 1 0 1 1 0 1

cos θ 1 0 1 0 0 1 0

tan θ 0 无意义 0 无意义 无意义 0 无意义

cot θ 无意义 0 无意义 0 0 无意义 0

sec θ 1 无意义 1 无意义 无意义 1 无意义

csc θ 无意义 1 无意义 1 1 无意义 1

余角公式   负角公式

    

    

                

补角公式

   

 

                                      

 三角恒等式

(1)平方关系 (2)倒数关系 (3)商数关系

                    

  三角函数的值域与周期

  函数值的范围(值域) 周期 三角函数是周期函数的缘由

sin x 2π cos x 2π

tan x 任意实数 π

cot x 任意实数 π

sec x 或 2π

csc x 或 2π

正余弦复角公式

设α, β为任意二角,则

和角的余弦公式 差角的余弦公式 和角的正弦公式

差角的正弦公式                                          

 正切复角公式

和角的正切公式 差角的正切公式 两倍角公式 (1) (2) (3) 三角形的面积公式

在△abc中,若以a, b, c分别代表 的对应边,表△abc的面积,则

   正弦定理

△abc中,若以a, b, c分别代表 及 的对应边,r为△abc的外接圆半径,则

                            

 余弦定理

                            

  heron定理(海龙公式)

已知△abc的三边长分别为a, b, c,且令 ,表△abc的面积,则

坐标几何

一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。轴线的交点是 (0, 0),称为原点。水平与垂直方向的位置,分别用x与y代表。 一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。这条直线与y轴相交于 (0, c),与x轴则相交于(–c/m, 0)。垂直线的方程式则是x=k,x为定值。 通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2 x1≠x2 若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn 半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。

三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球, 以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。 三维空间平面的一般式为ax+by+cz=d。

三角学

边长为a、b、c的直角三角形,其中一个夹角为θ。它的六个三角函数分别为:正弦(sine)、余弦 (cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。

sinθ=b/c cosθ=a/c tanθ=b/a cscθ=c/b secθ=c/a cotθ=a/b

若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。

a=cosθ b=sinθ

依照勾股定理,我们知道a2+b2=c2。因此对于圆上的任何角度θ,我们都可得出下列的全等式:

cos2θ+sin2θ=1

三角恒等式

根据前几页所述的定义,可得到下列恒等式(identity):

tanθ=sinθ/cosθ,cotθ=cosθ/sinθ

secθ=1/cosθ,cscθ=1/sinθ

分别用cos 2θ与sin 2θ来除cos 2θ+sin 2θ=1,可得:

sec 2θ–tan 2θ=1 及 csc 2θ–cot 2θ=1

对于负角度,六个三角函数分别为:

sin(–θ)= –sinθ csc(–θ)= –cscθ

cos(–θ)= cosθ sec(–θ)= secθ

tan(–θ)= –tanθ cot(–θ)= –cotθ

当两角度相加时,运用和角公式:

sin(α+β)= sinαcosβ+cosαsinβ

cos(α+β)= cosαcosβ–sinαsinβ

tan(α+β)= tanα+tanβ/1–tanαtanβ

若遇到两倍角或三倍角,运用倍角公式:

sin2α= 2sinαcosα sin3α= 3sinαcos2α–sin3α

cos2α= cos 2α–sin 2α cos3α= cos 3α–3sin 2αcosα

tan 2α= 2tanα/1–tan 2α

tan3α= 3tanα–tan 3α/1–3tan 2α

二维图形

下面是一些二维图形的周长与面积公式。

圆:

半径= r 直径d=2r

圆周长= 2πr =πd

面积=πr2 (π=3.1415926…….)

椭圆: 面积=πab

a与b分别代表短轴与长轴的一半。

矩形: 面积= ab 周长= 2a+2b

平行四边形(parallelogram):

面积= bh = ab sinα

周长= 2a+2b 梯形:

面积= 1/2h (a+b)

周长= a+b+h (secα+secβ)

正n边形:

面积= 1/2nb2 cot (180°/n)

周长= nb 四边形(i):

面积= 1/2ab sinα

四边形(ii):

面积= 1/2 (h1+h2) b+ah1+ch2

三维图形

以下是三维立体的体积与表面积(包含底部)公式。

球体:

体积= 4/3πr3

表面积= 4πr2 方体: 体积= abc

表面积= 2(ab+ac+bc)

圆柱体: 体积= πr2h

表面积= 2πrh+2πr2

圆锥体:

体积= 1/3πr2h

表面积=πr√r2+h2 +πr2

三角锥体: 若底面积为a,

体积= 1/3ah

平截头体(frustum):

体积= 1/3πh (a2+ab+b2)

表面积=π(a+b)c+πa2+πb2

椭球:

体积= 4/3πabc

环面(torus):

体积= 1/4π2 (a+b) (b–a) 2

表面积=π2 (b2–a2)

■初中数学函数知识归纳

初中数学知识点归纳(口诀)--函数

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量, 有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质

正比函数图直线,经过 和原点。

k正一三负二四,变化趋势记心间。

k正左低右边高,同大同小向爬山。

k负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过 点。

k正左低右边高,越走越高向爬山。

k负左高右边低,越来越低很明显。

k称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过 点。

k正一三负二四,两轴是它渐近线。

k正左高右边低,一三象限滑下山。

k负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

a定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

a定开口及大小,开口向上是正数。

绝对值大开口小,开口向下a负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线

■初中数学主要公式

1 过两点有且只有一条直线 2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:l=n兀r/180

145扇形面积公式:s扇形=n兀r^2/360=lr/2

■初中数学几何公式总结

1过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等

24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等

26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理 不在同一直线上的三个点确定一条直线

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:l=n∏r/180

145扇形面积公式:s扇形=n∏r/360=lr/2

146内公切线长= d-(r-r) 外公切线长= d-(r+r)

■初中数学公式总结

初中数学公式大全

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:l=n兀r/180

145扇形面积公式:s扇形=n兀r^2/360=lr/2

146内公切线长= d-(r-r) 外公切线长= d-(r+r)

147完全平方公式:(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

148平方差公式:(a+b)(a-b)=a^2-b^2

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式 两角和公式

sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+dx+ey+f=0 注:d2+e2-4f>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 s=c*h 斜棱柱侧面积 s=c'*h

正棱锥侧面积 s=1/2c*h' 正棱台侧面积 s=1/2(c+c')h'

圆台侧面积 s=1/2(c+c')l=pi(r+r)l 球的表面积 s=4pi*r2

圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h

斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长

柱体体积公式 v=s*h 圆柱体 v=pi*r2h

■初中数学函数知识归纳

初中数学知识点归纳(口诀)——函数

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量, 有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质

正比函数图直线,经过 和原点。

k正一三负二四,变化趋势记心间。

k正左低右边高,同大同小向爬山。

k负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过 点。

k正左低右边高,越走越高向爬山。

k负左高右边低,越来越低很明显。

k称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过 点。

k正一三负二四,两轴是它渐近线。

k正左高右边低,一三象限滑下山。

k负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

a定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

a定开口及大小,开口向上是正数。

绝对值大开口小,开口向下a负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线

■求初中高中数学中,关于三角函数、圆、弧一系列相关知识点的讲解及公式

i、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b(k,b为常数,k≠0)

则称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

ii、一次函数的性质:

y的变化值与对应的x的变化值成正比例,比值为k

即 △y/△x=k

iii、一次函数的图象及性质:

1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。

2. 性质:在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。

3. k,b与函数图象所在象限。

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

iv、确定一次函数的表达式:

已知点a(x1,y1);b(x2,y2),请确定过点a、b的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点p(x,y),都满足等式y=kx+b。所以可以列出2个方程:

y1=kx1+b① 和 y2=kx2+b②。

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

v、一次函数在生活中的应用

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量s。g=s-ft。

■怎么下载初中物理公式大全啊?、、

物理量 单位 公式

名称 符号 名称 符号

质量 m 千克 kg m=pv

温度 t 摄氏度 °c

速度 v 米/秒 m/s v=s/t

密度 p 千克/米³ kg/m³ p=m/v

力(重力) f 牛顿(牛) n g=mg

压强 p 帕斯卡(帕) pa p=f/s

功 w 焦耳(焦) j w=fs

功率 p 瓦特(瓦) w p=w/t

电流 i 安培(安) a i=u/r

电压 u 伏特(伏) v u=ir

电阻 r 欧姆(欧) r=u/i

电功 w 焦耳(焦) j w=uit

电功率 p 瓦特(瓦) w p=w/t=ui

热量 q 焦耳(焦) j q=cm(t-t°)

比热 c 焦/(千克°c) j/(kg°c)

真空中光速 3×108米/秒

g 9.8牛顿/千克

15°c空气中声速 340米/秒

安全电压 不高于36伏

初中物理基本概念概要 一、测量

⒈长度l:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。

⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。

⒊质量m:物体中所含物质的多少叫质量。主单位:千克; 测量工具:秤;实验室用托盘天平。

二、机械运动

⒈机械运动:物体位置发生变化的运动。

参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。

⒉匀速直线运动:

①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。

②公式: 1米/秒=3.6千米/时。

三、力

⒈力f:力是物体对物体的作用。物体间力的作用总是相互的。

力的单位:牛顿(n)。测量力的仪器:测力器;实验室使用弹簧秤。

力的作用效果:使物体发生形变或使物体的运动状态发生改变。

物体运动状态改变是指物体的速度大小或运动方向改变。

⒉力的三要素:力的大小、方向、作用点叫做力的三要素。

力的图示,要作标度;力的示意图,不作标度。

⒊重力g:由于地球吸引而使物体受到的力。方向:竖直向下。

重力和质量关系:g=mg m=g/g

g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。

重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。

⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。

物体在二力平衡下,可以静止,也可以作匀速直线运动。

物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。

⒌同一直线二力合成:方向相同:合力f=f1+f2 ;合力方向与f1、f2方向相同;

方向相反:合力f=f1-f2,合力方向与大的力方向相同。

⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。

滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】

7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。

四、密度

⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。

公式: m=ρv 国际单位:千克/米3 ,常用单位:克/厘米3,

关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;

读法:103千克每立方米,表示1立方米水的质量为103千克。

⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。

面积单位换算:

1厘米2=1×10-4米2,

1毫米2=1×10-6米2。

五、压强

⒈压强p:物体单位面积上受到的压力叫做压强。

压力f:垂直作用在物体表面上的力,单位:牛(n)。

压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。

压强单位:牛/米2;专门名称:帕斯卡(pa)

公式: f=ps 【s:受力面积,两物体接触的公共部分;单位:米2。】

改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。

⒉液体内部压强:【测量液体内部压强:使用液体压强计(u型管压强计)。】

产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。

规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。 [深度h,液面到液体某点的竖直高度。]

公式:p=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克。

⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。

1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高

测定大气压的仪器:气压计(水银气压计、盒式气压计)。

大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。

六、浮力

1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。

2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。

即f浮=g液排=ρ液gv排。 (v排表示物体排开液体的体积)

3.浮力计算公式:f浮=g-t=ρ液gv排=f上、下压力差

4.当物体漂浮时:f浮=g物 且 ρ物<ρ液 当物体悬浮时:f浮=g物 且 ρ物=ρ液

当物体上浮时:f浮>g物 且 ρ物<ρ液 当物体下沉时:f浮<g物 且 ρ物>ρ液

七、简单机械

⒈杠杆平衡条件:f1l1=f2l2。力臂:从支点到力的作用线的垂直距离

通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。

定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。

动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。

⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。w=fs 功的单位:焦耳

3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。

w=pt p的单位:瓦特; w的单位:焦耳; t的单位:秒。

八、光

⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。

光在真空中的速度最大为3×108米/秒=3×105千米/秒

⒉光的反射定律:一面二侧三等大。【入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。】

平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。

⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。

凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。 光的折射定律:一面二侧三随大四空大。

⒋凸透镜成像规律:[u=f时不成像 u=2f时 v=2f成倒立等大的实像]

物距u 像距v 像的性质 光路图 应用

u>2f f<v<2f 倒缩小实 照相机

f<u<2f v>2f 倒放大实 幻灯机

u<f 放大正虚 放大镜

⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。

九、热学:

⒈温度t:表示物体的冷热程度。【是一个状态量。】

常用温度计原理:根据液体热胀冷缩性质。

温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。

⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。【是过程量】

热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。

⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。

影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。

⒋比热容c:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。

比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。

c水=4.2×103焦/(千克℃) 读法:4.2×103焦耳每千克摄氏度。

物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。

⒌热量计算:q放=cm⊿t降 q吸=cm⊿t升

q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=q/cm

6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳

物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。

改变物体内能的方法:做功和热传递(对改变物体内能是等效的)

7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

十、电路

⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。 电路有通路、断路(开路)、电源和用电器短路等现象。

⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。

绝缘体在一定条件下可以转化为导体。

⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。

【把非标准电路图转化为标准的电路图的方法:采用电流流径法。】

十一、电流定律

⒈电量q:电荷的多少叫电量,单位:库仑。

电流i:1秒钟内通过导体横截面的电量叫做电流强度。 q=it

电流单位:安培(a) 1安培=1000毫安 正电荷定向移动的方向规定为电流方向。

测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。

⒉电压u:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(v)。

测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。

⒊电阻r:导电物体对电流的阻碍作用。符号:r,单位:欧姆、千欧、兆欧。

电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。【 】

导体电阻不同,串联在电路中时,电流相同(1∶1)。 导体电阻不同,并联在电路中时,电压相同(1:1)

⒋欧姆定律:公式:i=u/r u=ir r=u/i

导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。

导体电阻r=u/i。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。

⒌串联电路特点:

① i=i1=i2 ② u=u1+u2 ③ r=r1+r2 ④ u1/r1=u2/r2

电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。

例题:一只标有“6v、3w”电灯,接到标有8伏电路中,如何联接一个多大电阻,才能使小灯泡正常发光?

解:由于p=3瓦,u=6伏

∴i=p/u=3瓦/6伏=0.5安

由于总电压8伏大于电灯额定电压6伏,应串联一只电阻r2 如右图,

因此u2=u-u1=8伏-6伏=2伏

∴r2=u2/i=2伏/0.5安=4欧。答:(略)

⒍并联电路特点:

①u=u1=u2 ②i=i1+i2 ③1/r=1/r1+1/r2 或 ④i1r1=i2r2

电阻不同的两导体并联:电阻较大的通过的电流较小,通过电流较大的导体电阻小。

例:如图r2=6欧,k断开时安培表的示数为0.4安,k闭合时,a表示数为1.2安。求:①r1阻值 ②电源电压 ③总电阻

已知:i=1.2安 i1=0.4安 r2=6欧

求:r1;u;r 解:∵r1、r2并联

∴i2=i-i1=1.2安-0.4安=0.8安

根据欧姆定律u2=i2r2=0.8安×6欧=4.8伏

又∵r1、r2并联 ∴u=u1=u2=4.8伏

∴r1=u1/i1=4.8伏/0.4安=12欧

∴r=u/i=4.8伏/1.2安=4欧 (或利用公式 计算总电阻) 答:(略)

十二、电能

⒈电功w:电流所做的功叫电功。电流作功过程就是电能转化为其它形式的能。

公式:w=uq w=uit=u2t/r=i2rt w=pt 单位:w焦 u伏特 i安培 t秒 q库 p瓦特

⒉电功率p:电流在单位时间内所作的电功,表示电流作功的快慢。【电功率大的用电器电流作功快。】

公式:p=w/t p=ui (p=u2/r p=i2r) 单位:w焦 u伏特 i安培 t秒 q库 p瓦特

⒊电能表(瓦时计):测量用电器消耗电能的仪表。1度电=1千瓦时=1000瓦×3600秒=3.6×106焦耳

例:1度电可使二只“220v、40w”电灯工作几小时?

解 t=w/p=1千瓦时/(2×40瓦)=1000瓦时/80瓦=12.5小时

十三、磁

1.磁体、磁极【同名磁极互相排斥,异名磁极互相吸引】

物体能够吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物质叫磁体。磁体的磁极总是成对出现的。

2.磁场:磁体周围空间存在着一个对其它磁体发生作用的区域。

磁场的基本性质是对放入其中的磁体产生磁力的作用。

磁场方向:小磁针静止时n极所指的方向就是该点的磁场方向。磁体周围磁场用磁感线来表示。

地磁北极在地理南极附近,地磁南极在地理北极附近。

3.电流的磁场:奥斯特实验表明电流周围存在磁场。

通电螺线管对外相当于一个条形磁铁。

通电螺线管中电流的方向与螺线管两端极性的关系可以用右手螺旋定则来判定

如果需要其他和我联系

■初中数学几何、函数辅导书

<精编>,里面有许多例题,我用过,个人认为不错。

■初中数学函数知识点。

些知识点供参考想要些题百度文库面搜索初函数知识点面少呢~ 祝习进步~ 函数及其图像 、平面直角坐标系 平面内画两条互相垂直且公共原点数轴组平面直角坐标系 坐标平面x轴y轴割四部别叫做第象限、第二象限、第三象限、第四象限 注意:x轴y轴点属于任何象限 二、同位置点坐标特征 1、各象限内点坐标特征 第象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐标轴点特征 x轴纵坐标0 , y轴横坐标, 原点坐标(00) 3、两条坐标轴夹角平线点坐标特征 点p(x,y)第、三象限夹角平线 x与y相等 点p(x,y)第二、四象限夹角平线 x与y互相反数 4、坐标轴平行直线点坐标特征 位于平行于x轴直线各点纵坐标相同 位于平行于y轴直线各点横坐标相同 5、关于x轴、y轴或远点称点坐标特征 点p与点p’关于x轴称 横坐标相等纵坐标互相反数 点p与点p’关于y轴称 纵坐标相等横坐标互相反数 点p与点p’关于原点称 横、纵坐标均互相反数 6、点坐标轴及原点距离 点p(x,y)坐标轴及原点距离: (1)x轴距离等于 (2)y轴距离等于 (3)原点距离等于 三、函数及其相关概念 1、变量与量 某变化程取同数值量叫做变量数值保持变量叫做量 般某变化程两变量x与y于x每值y都唯确定值与应说x自变量yx函数 2、函数三种表示(1)解析(2)列表(3)图像 3、由函数解析式画其图像般步骤(1)列表(2)描点(3)连线 4、自变量取值范围 四、比例函数函数 1、比例函数函数概念 般 (kb数k 0)y叫做x函数 特别函数 b0 (k数k 0)y叫做x比例函数 2、函数图像:条直线 3、比例函数性质般比例函数 列性质: (1)k>0图像经第、三象限y随x增增; (2)k0y随x增增 (2)k0函数图像两支别第、三象限每象限内y随x 增减 (2)k0抛物线口向称轴x= 顶点坐标( );称轴左侧即x y随x增增;抛物线低点x= y值 (2) a y随x增减; 抛物线高点x= y值 4、.二函数解析式三种形式: (1)般式: (2)顶点式: (3)两根式: 5、抛物线 作用: 表示口向: >0抛物线口向 0图像与x轴两交点; =0图像与x轴交点;

■初中数学销售类问题公式

销售类:收益=价格*销量 ,利润=收益 - 成本 利润率=利润/成本

工程类:是不是指路程和速度那个?你可以追问下

■初中数学所有公式定律

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:l=n兀r/180

145扇形面积公式:s扇形=n兀r^2/360=lr/2

146内公切线长= d-(r-r) 外公切线长= d-(r+r)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式 两角和公式

sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+dx+ey+f=0 注:d2+e2-4f>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 s=c*h 斜棱柱侧面积 s=c'*h

正棱锥侧面积 s=1/2c*h' 正棱台侧面积 s=1/2(c+c')h'

圆台侧面积 s=1/2(c+c')l=pi(r+r)l 球的表面积 s=4pi*r2

圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h

斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长

柱体体积公式 v=s*h 圆柱体 v=pi*r2h

以上搜集的资料希望帮到你

■华师版初中数学书公式

抛物线:y = ax *+ bx + c

就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = a(x+h)* + k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆:体积=4/3(pi)(r^3)

面积=(pi)(r^2)

周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+dx+ey+f=0 注:d2+e2-4f>0

(一)椭圆周长计算公式

椭圆周长公式:l=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式

椭圆面积公式: s=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。常数为体,公式为用。

椭圆形物体 体积计算公式椭圆 的 长半径*短半径*pai*高

三角函数: 两角和公式

sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

四倍角公式:

sin4a=-4*(cosa*sina*(2*sina^2-1))

cos4a=1+(-8*cosa^2+8*cosa^4)

tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)

五倍角公式:

sin5a=16sina^5-20sina^3+5sina

cos5a=16cosa^5-20cosa^3+5cosa

tan5a=tana*(5-10*tana^2+tana^4)/(1-10*tana^2+5*tana^4)

六倍角公式:

sin6a=2*(cosa*sina*(2*sina+1)*(2*sina-1)*(-3+4*sina^2))

cos6a=((-1+2*cosa^2)*(16*cosa^4-16*cosa^2+1))

tan6a=(-6*tana+20*tana^3-6*tana^5)/(-1+15*tana^2-15*tana^4+tana^6)

七倍角公式:

sin7a=-(sina*(56*sina^2-112*sina^4-7+64*sina^6))

cos7a=(cosa*(56*cosa^2-112*cosa^4+64*cosa^6-7))

tan7a=tana*(-7+35*tana^2-21*tana^4+tana^6)/(-1+21*tana^2-35*tana^4+7*tana^6)

八倍角公式:

sin8a=-8*(cosa*sina*(2*sina^2-1)*(-8*sina^2+8*sina^4+1))

cos8a=1+(160*cosa^4-256*cosa^6+128*cosa^8-32*cosa^2)

tan8a=-8*tana*(-1+7*tana^2-7*tana^4+tana^6)/(1-28*tana^2+70*tana^4-28*tana^6+tana^8)

九倍角公式:

sin9a=(sina*(-3+4*sina^2)*(64*sina^6-96*sina^4+36*sina^2-3))

cos9a=(cosa*(-3+4*cosa^2)*(64*cosa^6-96*cosa^4+36*cosa^2-3))

tan9a=tana*(9-84*tana^2+126*tana^4-36*tana^6+tana^8)/(1-36*tana^2+126*tana^4-84*tana^6+9*tana^8)

十倍角公式:

sin10a=2*(cosa*sina*(4*sina^2+2*sina-1)*(4*sina^2-2*sina-1)*(-20*sina^2+5+16*sina^4))

cos10a=((-1+2*cosa^2)*(256*cosa^8-512*cosa^6+304*cosa^4-48*cosa^2+1))

tan10a=-2*tana*(5-60*tana^2+126*tana^4-60*tana^6+5*tana^8)/(-1+45*tana^2-210*tana^4+210*tana^6-45*tana^8+tana^10)

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

公式分类 公式表达式

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+dx+ey+f=0 注:d2+e2-4f>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 s=c*h 斜棱柱侧面积 s=c'*h

正棱锥侧面积 s=1/2c*h' 正棱台侧面积 s=1/2(c+c')h'

圆台侧面积 s=1/2(c+c')l=pi(r+r)l 球的表面积 s=4pi*r2

圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h

斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长

柱体体积公式 v=s*h 圆柱体 v=pi*r2h

图形周长 面积 体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则s=ah/2

已知三角形三边a,b,c,半周长p,则s= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形两边a,b,这两边夹角c,则s=absinc/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

已知三角形三边a、b、c,则s= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)

| a b 1 |

s△=1/2 * | c d 1 |

| e f 1 | 【| a b 1 |

| c d 1 | 为三阶行列式,此三角形abc在平面直角坐标系内a(a,b),b(c,d), c(e,f),这里abc

| e f 1 |

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】

秦九韶三角形中线面积公式:

s=√[(ma+mb+mc)*(mb+mc-ma)*(mc+ma-mb)*(ma+mb-mc)]/3

其中ma,mb,mc为三角形的中线长.

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2 半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积 =长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高 平面图形

名称 符号 周长c和面积s

正方形 a—边长 c=4a

s=a2

长方形 a和b-边长 c=2(a+b)

s=ab

三角形 a,b,c-三边长

h-a边上的高 s-周长的一半 a,b,c-内角

其中s=(a+b+c)/2 s=ah/2

=ab/2?sinc

=[s(s-a)(s-b)(s-c)]1/2

=a2sinbsinc/(2sina)

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)

94 判定定理3 三边对应成比例,两三角形相似(sss)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线l和⊙o相交 d

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r+r ②两圆外切 d=r+r

③两圆相交 r-rr)

④两圆内切 d=r-r(r>r) ⑤两圆内含dr)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:l=nπr/180

145扇形面积公式:s扇形=nπr2/360=lr/2

146内公切线长= d-(r-r) 外公切线长= d-(r+r)

147等腰三角形的两个底脚相等

148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合

149如果一个三角形的两个角相等,那么这两个角所对的边也相等

150三条边都相等的三角形叫做等边三角形

■初中数学函数总复习资料

正比例函数的概念

一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。

正比例函数属于一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)

当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大.

当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小.

[编辑本段]正比例函数的性质

1.定义域:r(实数集)

2.值域:r(实数集)

3.奇偶性:奇函数

4.单调性:当k>0时,图象位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图象位于第二、四象限,y随x的增大而减小(单调递减)。

5.周期性:不是周期函数。

6.对称轴:直线,无对称轴。

[编辑本段]正比例函数解析式的求法

设该正比例函数的解析式为 y=kx(k≠0),将已知点的坐标带入上式得到k,即可求出正比例函数的解析式。

另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。

[编辑本段]正比例函数的图像

正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜率是k,横、纵截距都为0。

[编辑本段]正比例函数图像的作法

1.在x允许的范围内取一个值,根据解析式求出y值

2.根据第一步求的x、y的值描出点

3.做过第二步描出的点和原点的直线

[编辑本段]正比例函数的应用

正比例函数在线性规划问题中体现的力量也是无穷的。

比如斜率问题就取决于k值,当k越大,则该函数图像与x轴的夹角越大,反之亦然

还有,y=kx 是 y=k/x 的图像的对称轴。

①正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:

②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k>0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?

以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系。

[编辑本段]反比例函数的定义

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量x的取值范围是x≠0。而y=k/x有时也被写成xy=k或y=kx-¹。

[编辑本段]反比例函数表达式

y=k/x 其中x是自变量,y是x的函数

y=k/x=k·1/x

xy=k y=k·x^-1

y=k\x(k为常数(k≠0),x不等于0)

[编辑本段]反比例函数的自变量的取值范围

① k ≠ 0; ②一般情况下 , 自变量 x 的取值范围是 x ≠ 0 的一切实数 ; ③函数 y 的取值范围也是一切非零实数 .

[编辑本段]反比例函数图象

反比例函数的图象属于双曲线,

曲线越来越接近x和y轴但不会相交(k≠0)。

[编辑本段]反比例函数性质

1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限。

2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大。

k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点p,q,过点p,q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为s1,s2则s1=s2=|k|

5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于a、b两点(m、n同号),那么a b两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则b²+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

[编辑本段]反比例函数的应用举例

【例1】反比例函数 的图象上有一点p(m, n)其坐标是关于t的一元二次方程t2-3t+k=0的两根,且p到原点的距离为根号13,求该反比例函数的解析式.

分析:

要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程.

解:∵ m, n是关于t的方程t2-3t+k=0的两根

∴ m+n=3,mn=k,

又 po=根号13,

∴ m2+n2=13,

∴(m+n)2-2mn=13,

∴ 9-2k=13. ∴ k=-2

当 k=-2时,△=9+8>0,

∴ k=-2符合条件,

【例2】直线 与位于第二象限的双曲线 相交于a、a1两点,过其中一点a向x、y轴作垂线,垂足分别为b、c,矩形aboc的面积为6,求:

(1)直线与双曲线的解析式;

(2)点a、a1的坐标.

分析:矩形aboc的边ab和ac分别是a点到x轴和y轴的垂线段,

设a点坐标为(m,n),则ab=|n|, ac=|m|,

根据矩形的面积公式知|m·n|=6.

【例3】如图,在 的图象上有a、c两点,分别向x轴引垂线,垂足分别为b、d,连结oc,oa,设oc与ab交于e,记△aoe的面积为s1,四边形bdce的面积为s2,试比较s1与s2的大小.

[编辑本段]数学术语

【读音】yī cì hán shù

【解释】函数的基本概念:一般地,在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。表示为y=kx+b(其中b为任意常数,k不等于0),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx

[编辑本段]基本定义 变量:变化的量 常量:不变的量

自变量x和x的一次函数y有如下关系:

y=kx+b (k为任意不为零常数,b为任意常数)

当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。

x为自变量,y为因变量,k为常量,y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但k≠0)正比例函数图像经过原点。

定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。

[编辑本段]相关性质 函数性质

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0) (k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的,坐标为(0,b).

3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

形、取、象、交、减。

4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.

5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。

图像性质

1.作法与图形:通过如下3个步骤

(1)列表

(2)描点;[一般取两个点,根据“两点确定一条直线”的道理];

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)

2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比例):

当k>0时,直线必通过第一、三象限,y随x的增大而增大;

当k<0时,直线必通过第二、四象限,y随x的增大而减小。

y=kx+b时:

当 k>0,b>0, 这时此函数的图象经过第一、二、三象限。

当 k>0,b<0, 这时此函数的图象经过第一、三、四象限。

当 k<0,b>0, 这时此函数的图象经过第一、二、四象限。

当 k<0,b<0, 这时此函数的图象经过第二、三、四象限。

当b>0时,直线必通过第一、二象限;

当b<0时,直线必通过第三、四象限。

特别地,当b=0时,直线通过原点o(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中k值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中k值互为负倒数(即两个k值的乘积为-1)

[编辑本段]表达式 解析式类型

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)

[编辑本段]常用公式

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

5.求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (其中分母为0,则分子为0)

x y + + 在第一象限 + - 在第四象限 - + 在第二象限 - - 在第三象限

8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

10.

y=k(x-n)+b就是向右平移n个单位

y=k(x+n)+b就是向左平移n个单位

口诀:右减左加(对于y=kx+b来说,只改变k)

y=kx+b+n就是向上平移n个单位

y=kx+b-n就是向下平移n个单位

口诀:上加下减(对于y=kx+b来说,只改变b)

[编辑本段]相关应用 生活中的应用

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量s。g=s-ft。

3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

数学问题

一、确定字母系数的取值范围

例1 已知正比例函数 ,则当k<0时,y随x的增大而减小。

解:根据正比例函数的定义和性质,得 且m<0,即 且 ,所以 。

二、比较x值或y值的大小

例2. 已知点p1(x1,y1)、p2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )

a. x1>x2 b. x1<x2 c. x1=x2 d.无法确定

解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选a。

三、判断函数图象的位置

例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )

a. 第一象限 b. 第二象限

c. 第三象限 d. 第四象限

解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选a .

典型例题

例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.

分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.

解:由题意设所求函数为y=kx+12

则13.5=3k+12,得k=0.5

∴所求函数解析式为y=0.5x+12

由23=0.5x+12得:x=22

∴自变量x的取值范围是0≤x≤22

例2 某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?

此题要考虑x的范围

解:设总费用为y元,刻录x张

电脑公司:y1=8x

学校 :y2=4x+120

当x=30时,y1=y2

当x>30时,y1>y2

当x<30时,y1<y2

【考点指要】

一次函数的定义、图象和性质在中考说明中是c级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是d级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.

例3 如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。

解:

(1)若k>0,则可以列方程组 -2k+b=-11

6k+b=9

解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6

(2)若k<0,则可以列方程组 -2k+b=9

6k+b=-11

解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4

【考点指要】

此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函

数。顶点坐标(-b/2a,(4ac-b^2)/4a)

2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,

但初中课本上都是第一个式子)

3:交点式(与x轴):y=a(x-x1)(x-x2)

重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大。)

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的二次函数

x1,x2=[-b±根号下(b^2-4ac)]/2a (即一元二次方程求根公式)

求根的方法还有十字相乘法和配方法

[编辑本段]二次函数的图像

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有 1本身图像,旁边注名函数。

2画出对称轴,并注明x=什么

3与x轴交点坐标,与y轴交点坐标,顶点坐标。

[编辑本段]抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点p。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点p,坐标为p ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,p在y轴上;当Δ= b^2-4ac=0时,p在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

(即ab< 0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

斜率k的值。可通过对二次函数求导得到。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上

虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在

{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

7.特殊值的形式

①当x=1时 y=a+b+c

②当x=-1时 y=a-b+c

③当x=2时 y=4a+2b+c

④当x=-2时 y=4a-2b+c

8.定义域:r

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

正无穷);②[t,正无穷)

奇偶性:偶函数 周期性:无 解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

对称轴x=(x1+x2)/2 当a>0 且x≥(x1+x2)/2时,y随x的增大而增大,当a>0且x≤(x1+x2)/2时y随x

的增大而减小

此时,x1、x2即为函数与x轴的两个交点,将x、y代入即可求出解析式(一般与一元二次方程连

用)。

[编辑本段]二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式 y=ax^2; y=ax^2+k

y=a(x-h)^2;

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标 (0,0) (0,k) (h,0) (h,k)

(-b/2a,4ac-b^2/4a)

对 称 轴 x=0 x=0 x=h x=h

x=-b/2a

当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离ab=|x₂-x₁| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-a |(a为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

■初中数学函数知识点

1.常量和变量

在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.

2.函数

设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

3.自变量的取值范围

(1)整式:自变量取一切实数.

(2)分式:分母不为零.

(3)偶次方根:被开方数为非负数.

(4)零指数与负整数指数幂:底数不为零.

4.函数值

对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.

5.函数的表示法

(1)解析法;(2)列表法;(3)图象法.

6.函数的图象

把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.

由函数解析式画函数图象的步骤:

(1)写出函数解析式及自变量的取值范围;

(2)列表:列表给出自变量与函数的一些对应值;

(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

7.一次函数 (1)一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

(2)一次函数的图象

一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线.

特别地,正比例函数图象是一条经过原点的直线.

需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

(3)一次函数的性质

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.

直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .

(4)用函数观点看方程(组)与不等式

①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.

②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

8.反比例函数 (1)反比例函数

如果 (k是常数,k≠0),那么y叫做x的反比例函数.

(2)反比例函数的图象

反比例函数的图象是双曲线.

(3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

③反比例函数图象关于直线y=±x对称,关于原点对称.

(4)k的两种求法

①若点(x0,y0)在双曲线 上,则k=x0y0.

②k的几何意义:

若双曲线 上任一点a(x,y),ab⊥x轴于b,则s△aob

(5)正比例函数和反比例函数的交点问题

若正比例函数y=k1x(k1≠0),反比例函数 ,则

当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数

如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

2.二次函数的图象

二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.

由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.

3.二次函数的性质

二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:

(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;

(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ;

若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;

(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当<0时,抛物线y=ax2+bx+c与x轴没有公共点.

4.抛物线的平移

抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

初中数学知识点归纳(口诀)——函数

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量, 有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质

正比函数图直线,经过 和原点。

k正一三负二四,变化趋势记心间。

k正左低右边高,同大同小向爬山。

k负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过 点。

k正左低右边高,越走越高向爬山。

k负左高右边低,越来越低很明显。

k称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过 点。

k正一三负二四,两轴是它渐近线。

k正左高右边低,一三象限滑下山。

k负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

a定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

a定开口及大小,开口向上是正数。

绝对值大开口小,开口向下a负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线

■初中数学圆锥侧面积公式

按照展开扇形来看是 n/360 ×2r(扇形的直径)

按母线来看是 πrll(派乘底面圆的半径再乘扇形半径也就是母线)圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πlr

(l是圆锥的侧长,r是圆锥半径)

不懂继续往下看:

圆锥体的侧面积公式出现两种:

s=1/2rl。(r为圆锥体底面圆的周长,l为圆锥的母线长)

s=πrl。 (r为圆锥体底面圆的半径,l为圆锥的母线长)

都是正确的,只是途径不一样。

求圆锥体的侧面积,先要把圆锥体变形。

设想沿着圆锥一条母线剪断,然后展开,可以得到一个扇形,求它的面积就可以了。

求扇形面积有两种方法,结果就有了以上两种不同的表达式。

表达式 1 利用积分原理。

设想扇形是由若干n个等腰三角形拼成,这些三角形是足够小,使得其底边长 = r/n (r是圆锥体地面圆的周长,即扇形的弧长),高 = 侧边长l(l为扇形的半径,亦为圆锥体的母线)。

则扇形面积

s = n(三角形个数) x s(单位等腰三角形的面积)

= n x (1/2 x r/n x l)

= 1/2rl 表达式 2 利用弧长。

扇形面积 / 圆总面积 = 弧长 / 圆周长

扇形面积

s = 圆总面积(扇形所属圆) x (弧长 / 圆周长)

= 圆总面积 x (圆锥地面周长 / 扇形所属圆形周长)

= πl2(l为母线长) x (2πr / 2πl)

= πlr

■初中数学竞赛常用公式(急)

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2 

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosb 注:角b是边a和边c的夹角

圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 

圆的一般方程 x^2+y^2+dx+ey+f=0 注:d^2+e^2-4f>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 s=c*h 斜棱柱侧面积 s=c'*h

正棱锥侧面积 s=1/2c*h' 正棱台侧面积 s=1/2(c+c')h'

圆台侧面积 s=1/2(c+c')l=pi(r+r)l 球的表面积 s=4pi*r2

圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h ?

斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长

柱体体积公式 v=s*h 圆柱体 v=pi*r2h

以下是借用一楼的.哈!!

1.诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π2-a)=cos(a)

cos(π2-a)=sin(a)

sin(π2+a)=cos(a)

cos(π2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

2.两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)

tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

3.和差化积公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)

sin(a)−sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2)

cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.二倍角公式

sin(2a)=2sin(a)cos(b)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)

5.半角公式

sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

6.万能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)

7.其它公式(推导出来的 )

a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba

a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab

1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2

回答者:慕云2006 - 门吏 三级 11-24 16:13

高考数学常用公式 1.德摩根公式 . 2. 3. .

4.二次函数的解析式的三种形式 ①一般式 ;② 顶点式 ;③零点式 .

5.设 那么 上是增函数; 上是减函数.

设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.

6.函数 的图象的对称性:①函数 的图象关于直线 对称 .②函数 的图象关于直线 对称 .

7.两个函数图象的对称性:①函数 与函数 的图象关于直线 (即 轴)对称.②函数 与函数 的图象关于直线 对称.③函数 和 的图象关于直线y=x对称.

8.分数指数幂 ( ,且 ).

( ,且 ). 9. .

10.对数的换底公式 .推论 .

11. ( 数列 的前n项的和为 ).

12.等差数列的通项公式 ;

其前n项和公式 .

13.等比数列的通项公式 ;

其前n项的和公式 或 .

14.等比差数列 : 的通项公式为

; 其前n项和公式为 .

15.分期付款(按揭贷款) 每次还款 元(贷款 元, 次还清,每期利率为 ).

16.同角三角函数的基本关系式 , = , .

17.正弦、余弦的诱导公式

18.和角与差角公式 ; ; . (平方正弦公式); .

= (辅助角 所在象限由点 的象限决定, ).

19.二倍角公式 . . .

20.三角函数的周期公式 函数 ,x∈r及函数 ,x∈r(a,ω, 为常数,且a≠0,ω>0)的周期 ;函数 , (a,ω, 为常数,且a≠0,ω>0)的周期 .

21.正弦定理 .

22.余弦定理 ; ; .

23.面积定理(1) ( 分别表示a、b、c边上的高).

(2) . (3) .

24.三角形内角和定理 在△abc中,有

.

25.平面两点间的距离公式

= (a ,b ).

26.向量的平行与垂直 设a= ,b= ,且b 0,则

a b b=λa .

a b(a 0) a•b=0 .

27.线段的定比分公式 设 , , 是线段 的分点, 是实数,且 ,则

( ).

28.三角形的重心坐标公式 △abc三个顶点的坐标分别为 、 、 ,则△abc的重心的坐标是 .

29.点的平移公式 (图形f上的任意一点p(x,y)在平移后图形 上的对应点为 ,且 的坐标为 ).

30.常用不等式:

(1) (当且仅当a=b时取“=”号).

(2) (当且仅当a=b时取“=”号).

(3) (4)柯西不等式 (5)

31.极值定理 已知 都是正数,则有

(1)如果积 是定值 ,那么当 时和 有最小值 ;

(2)如果和 是定值 ,那么当 时积 有最大值 .

32.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

; .

33.含有绝对值的不等式 当a> 0时,有

. 或 .

34.无理不等式(1) .

(2) . (3) .

35.指数不等式与对数不等式 (1)当 时,

; . (2)当 时, ;

36.斜率公式 ( 、 ).

37.直线的四种方程

(1)点斜式 (直线 过点 ,且斜率为 ).

(2)斜截式 (b为直线 在y轴上的截距).

(3)两点式 ( )( 、 ( )).

(4)一般式 (其中a、b不同时为0).

38.两条直线的平行和垂直 (1)若 ,

① ;② .

(2)若 , ,且a1、a2、b1、b2都不为零,

① ;② ;

39.夹角公式 .( , , )

( , , ).

直线 时,直线l1与l2的夹角是 .

40.点到直线的距离 (点 ,直线 : ).

41. 圆的四种方程

(1)圆的标准方程 .

(2)圆的一般方程 ( >0).

(3)圆的参数方程 .

(4)圆的直径式方程 (圆的直径的端点是 、 ).

42.椭圆 的参数方程是 .

43.椭圆 焦半径公式 , .

44.双曲线 的焦半径公式

, .

45.抛物线 上的动点可设为p 或 p ,其中 .

46.二次函数 的图象是抛物线:(1)顶点坐标为 ;(2)焦点的坐标为 ;(3)准线方程是 .

47.直线与圆锥曲线相交的弦长公式 或

(弦端点a ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).

48.圆锥曲线的两类对称问题:

(1)曲线 关于点 成中心对称的曲线是 .

(2)曲线 关于直线 成轴对称的曲线是

.

49.“四线”一方程 对于一般的二次曲线 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 即得方程

,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.

50.共线向量定理 对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.

51.对空间任一点o和不共线的三点a、b、c,满足 ,

则四点p、a、b、c是共面 .

52. 空间两个向量的夹角公式 cos〈a,b〉= (a= ,b= ).

53.直线 与平面所成角 ( 为平面 的法向量).

54.二面角 的平面角 或 ( , 为平面 , 的法向量).

55.设ac是α内的任一条直线,且bc⊥ac,垂足为c,又设ao与ab所成的角为 ,ab与ac所成的角为 ,ao与ac所成的角为 .则 .

56.若夹在平面角为 的二面角间的线段与二面角的两个半平面所成的角是 , ,与二面角的棱所成的角是θ,则有 ;

(当且仅当 时等号成立).

57.空间两点间的距离公式 若a ,b ,则

= .

58.点 到直线 距离 (点 在直线 上,直线 的方向向量a= ,向量b= ).

59.异面直线间的距离 ( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离).

60.点 到平面 的距离 ( 为平面 的法向量, 是经过面 的一条斜线, ).

61.异面直线上两点距离公式

(两条异面直线a、b所成的角为θ,其公垂线段 的长度为h.在直线a、b上分别取两点e、f, , , ).

62.

(长度为 的线段在三条两两互相垂直的直线上的射影长分别为 ,夹角分别为 )(立几中长方体对角线长的公式是其特例).

63. 面积射影定理

(平面多边形及其射影的面积分别是 、 ,它们所在平面所成锐二面角的为 ).

64.欧拉定理(欧拉公式) (简单多面体的顶点数v、棱数e和面数f)

65.球的半径是r,则其体积是 ,其表面积是 .

1.诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π2-a)=cos(a)

cos(π2-a)=sin(a)

sin(π2+a)=cos(a)

cos(π2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

2.两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)

tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

3.和差化积公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)

sin(a)−sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2)

cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.二倍角公式

sin(2a)=2sin(a)cos(b)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)

5.半角公式

sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

6.万能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)

7.其它公式(推导出来的 )

a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba

a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab

1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2

祝你考个好成绩。

■初中数学二次函数

二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般地,自变量x和因变量y之间存在如下关系:

一般式:1:y=ax^2+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b²)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式)

2.顶点式:y=a(x+m)^2+k(a≠0,m≠0,k≠0) (两个式子实质一样,但初中课本上都是第一个式子)(若给出抛物线的顶点坐标或对称轴与最值,通常可设顶点式),顶点坐标为(-m,k)对称轴x=-m

3.交点式(与x轴):y=a(x-x₁)(x-x₂) (若给出抛物线与x轴的交点及对称轴与x轴的交点距离或其他一的条件,通常可设交点式)

重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的二次函数

x₁,x₂=[-b±√(b²-4ac)]/2a

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有

1本身图像,旁边注名函数。

2画出对称轴,并注明x=什么

3与x轴交点坐标,与y轴交点坐标,顶点坐标。抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点p。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点p,坐标为p ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,p在y轴上;当Δ= b^2-4ac=0时,p在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时 (即ab< 0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

斜率k的值。可通过对二次函数求导得到。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数 Δ= b*2-4ac>0时,抛物线与x轴有2个交点。 Δ= b*2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上 虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在 {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

7.特殊值的形式

①当x=1时 y=a+b+c

②当x=-1时 y=a-b+c

③当x=2时 y=4a+2b+c

④当x=-2时 y=4a-2b+c

8.定义域:r

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a, 正无穷);

②[t,正无穷) 奇偶性:偶函数 周期性:无

解析式: ①y=ax^2+bx+c[一般式]

⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)^2+k[顶点式] 此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0) 对称轴x=(x1+x2)/2 当a>0 且x≥(x1+x2)/2时,y随x的增大而增大,当a>0且x≤(x1+x2)/2时y随x 的增大而减小 此时,x1、x2即为函数与x轴的两个交点,将x、y代入即可求出解析式(一般与一元二次方程连用)。

焦点式是y=a(x-x1)(x-x2) 知道两个x轴焦点和另一个点坐标设焦点式。两焦点x值就是相应x1 x2值。

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),ax^2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴 y=ax^2 (0,0) x=0 y=ax^2+k (0,k) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,4ac-b^2/4a) x=-b/2a

当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x+h)^2-k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离ab=|x₂-x₁| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-a |(a为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

习题:

1.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: .

考点:二次函数y=ax^2+bx+c的求法

评析:设所求解析式为y=a(x-x1)(x-x2),且设x1

∴x2-4=4 - x1

即:x1+ x2=8

① ∵s△abc=3,∴(x2- x1)·|a x1 x2|= 3,

即:x2- x1= ②

①②两式相加减,可得:x2=4+,x1=4-

∵x1,x2是整数,ax1x2也是整数,

∴ax1x2是3的约数,共可取值为:±1,±3。

当ax1x2=±1时,x2=7,x1=1,a=±

当ax1x2=±3时,x2=5,x1=3,a=±

因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)

即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3

说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为a(5,0),b(3,0)。再由题设条件求出a,看c是否整数。若是,则猜测得以验证,填上即可。

2.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0

(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?

(2)第10分时,学生的接受能力是什么?

(3)第几分时,学生的接受能力最强?

考点:二次函数y=ax^2+bx+c的性质。

评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0

解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9

所以,当0

当13

(2)当x=10时,y=-0.1(10-13)2+59.9=59。

第10分时,学生的接受能力为59。

(3)x=13时,y取得最大值,

所以,在第13分时,学生的接受能力最强。

3.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为:(55–40)×450=6750(元).

(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x^2+1400x–40000(元),

∴y与x的函数解析式为:y =–10x^2+1400x–40000.

(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000, 即:x2–140x+4800=0,

解得:x1=60,x2=80.

当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:40×400=16000(元);

当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:40×200=8000(元);

由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.

  • 共2页
  • 1
  • 2

相关阅读