数学典故及数学故事

要短小一点的 与实数等初中所学数学知识相关数学家的典故及数学故事

不要太长 不要数学题之类的 要7个

■要短小一点的 与实数等初中所学数学知识相关数学家的典故及数学故事不要太长 不要数...

要短小一点的 与实数等初中所学数学知识相关数学家的典故及数学故事
不要太长 不要数学题之类的 要7个

■初中数学教学故事

要生动,有感想

■初中数学小故事

八戒吃了几个山桃

八戒去花果山找悟空,大圣不在家。小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1

八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。

悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!”

哈哈,你知道八戒吃了几个山桃?

阿拉伯数字的由来

小明是个喜欢提问的孩子。一天,他对0-9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0-9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”

妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”

小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

儿歌比赛

动物学校举办儿歌比赛,大象老师做裁判。

小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”

小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”

大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。

<、>和=的本领

很久以前,数学王国比较混乱。0-9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。数学天使看到这种情况很生气,派<、>和=三个小天使到数学王国建立次序,避免混乱。

三个小天使来到数学王国,0-9十个兄弟轻蔑地看着它们。9问道:“你们三个来数学王国干什么,我们不欢迎你们!”

=笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”

0-9十个兄弟听说它们是天使派来的法官,就乖乖地服从<、>和=的命令。从此,数学王国有了严格的次序,任何人不会违反。

小熊开店

小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。

它们来到小熊的水果店。

“桃子怎么卖呀?”小猴问。

“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。

小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?”

小熊点点头。

“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?”

“正是,正是。”小熊讲。

于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。

晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。

小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。

唐僧师徒摘桃子

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?

八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?

唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗

数学优秀小故事

有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”

刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”

“人嘛,还可以,是一个大团。”

刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。

作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”

“你请说吧。”刘先生自信地说。

“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”

“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”

于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。”

“人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”

“好,我们今天就住在您这儿了。”

“那你们有多少男的和女的?”

“有55个男的,30个女的。”

“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?”

“当然是先生您给安排了,但必须男女分开,也不能有空床位。”

又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。

瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。

于江先生看了他的安排后,非常满意,马上办了住宿手续。

一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。

聪明的小男孩

从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。

一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。

正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”

大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?

其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……”

小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!

■数学小论文或数学小故事

欧几里德(euclidofalexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。

欧几里德是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。

笛卡儿

笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。

欧拉

欧拉(leonhardeuler公元1707-1783年)1707年出生在瑞士的巴塞尔(basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(johannbernoulli,1667-1748年)的精心指导.

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".

伽罗华(Évaristegalois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(solutionbyradicals)的不可能性(其实当时已为阿贝尔(abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他已经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(cauchy)遗失了,第二次则被傅立叶(fourier)所遗失;他还与埃科尔综合技术学院(écolepolytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。

彭加勒,法国数学家。1854年4月29日生于南锡,1912年7月17日卒于巴黎。

彭加勒在读中学时,已显示出很高的数学才能。1873年10月以第一名考入巴黎综合工科学校;1875年入国立高等矿业学校学习工程,后任工程师;1879年以数学论文获博士学位,旋即去卡昂大学理学院任讲师;1881年为巴黎大学教授,直到去世;他是全能的数学家,在算术、代数、几何和分析四个数学领域的研究成果都是第一流的,成功地解决了太阳、地球、月亮间相互运动的三体问题;他是现代物理的两大支柱-相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代科学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为三十多个国家的科学院院士。

彭加勒的研究涉及了数论、代数学、几何学、拓扑学等许多领域。彭加勒对经典物理学有深入而广泛的研究,对狭义相对论的创立有一定的贡献。他从1899年开始研究电子理论,最先认识到洛伦茨变换构成群。

希尔伯特,d.(hilbert,david,1862~1943)德国数学。

希尔伯特于1900年8月8日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”。

熊庆来,字迪之,清代光绪十七年(公元1891年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了《无穷极之函数问题》等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。

华罗庚(1910-1985)

中国数学家、教育家,中国解析数论、典型群、矩阵几何学、自守函数论与多服变函数论等方面的创始人与开拓者。江苏金坛人。他的关于完整三角和的研究成果被国际数学界称为“华氏定理”。著有《对垒素数论》《数论导引》《高等数学引论》以及《优选法评话及其补充》《统筹法评话及补充》等

陈建功(1893—1971)数学家,数学教育家。早年在浙江大学数学系任教20余年,1952年后被强行调往上海执教,后曾任杭州大学副校长。研究领域涉及正交函数,三角级数,函数逼近,单叶函数与共形映照等。是我国函数论研究的开拓者之一。

丘成桐

1981年,他32岁时,获得了美国数学会的维布伦(veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(crawford)奖。

除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士……

■初中趣味数学小故事

学校里面搞活动,大家帮帮忙吧!

■初中数学趣题及答案

■关于数学史或者数学家的故事的初中数学小论文应该怎么写?

参考《数学史教程》,也可以到书店查阅一些相关书籍,然后再写,写出你的感想就可以了。 

■有关数学家故事的小论文

我国著名的数学家陈景润叔叔在攻克数学难题——‘哥德巴赫猜想’中取得了世界领先的成绩.因此, 他的名字就和‘哥德巴赫猜想’紧紧地联系在一起了.什么叫‘哥德巴赫猜想’呢? 1732 年德国的数学家哥德巴赫发现的一个规律: 凡是大于2 的偶数, 都可以表示为两个素数 (质数) 的和, 即‘1+1 问题’.例如, 12=7+5, 28=11+17, 等等.哥德巴赫对许多偶数进行的检验都说明这个猜想是正确的.后来有人验算到三亿三千万这样大的偶数都说明是正确的.但是对更大更大的偶数呢? 哥德巴赫猜想也是正确的.不过猜想应该证明.但是要证明这个猜想却很难.哥德巴赫把这个猜想告诉了大数学家欧拉, 请他来帮忙, 但是欧拉一直到死都没有证明出来.这个难题传遍了世界, 吸引了成千上万的数学家.两百多年过去了, ‘哥德巴赫猜想’仍没有被证明. 解放前陈景润叔叔还在中学读书的时候, 就听到了曾经在清华大学教过书的沈先生说: ‘自然科学的皇后是数学, 数学皇冠是数论, 哥德巴赫猜想是皇冠上的明珠.’沈先生讲了以后, 有的同学嘁嘁喳喳地讨论.陈景润叔叔呢? 他没有笑也没有说, 却把摘下皇冠上的明珠的美好愿望埋在心窝里了.从此, 他学习更加勤奋, 1953 年陈景润叔叔以优异的成绩在厦门大学毕业了.他先在北京当中学教师, 后来又调到厦门大学研究著名数学家华罗庚的的数学名著, 写出了质量很高的数学论文.他的论文得到了许多老前辈数学家的称赞.特别是华罗庚教授对他的研究成果更为赞赏, 鼓励他继续前进.在华罗庚教授的建议下, 陈景润叔叔调到了中国科学院搞研究工作.他在精通英语、俄语的基础上, 又自学了法语、德语.他在打好了扎实的基础后, 开始向‘哥德巴赫猜想’的高峰进军了.就在这时候陈景润叔叔忽然病倒了, 医生给他开了一张又一张的病假条要他休息.可是他不肯休息, 仍然在埋头钻研.每天从早到晚, 甚至连节日、假日也不停地工作.他的手总是握着笔在一页又一页的草稿纸上计算. ‘文化大革命’中, 他被指责为走白专道路的人, 不准他进办公室, 他只得躲在只有六平方米的自己的宿舍里工作.有人连电灯都不给他, 他就点上煤油灯在床板上演算.到1972 年陈景润叔叔终于在研究‘哥德巴赫猜想’方面攻破了‘1+2 问题’的难关, 并发表了重要论文《大偶数表为一个质数及不超过两个质数乘积之和》.例如: 3124<121= 11× 11 这篇论文很快传到了国外, 被国外数学家称为陈氏定理.陈景润叔叔在‘哥德巴赫猜想’的研究方面攀上了前人没攀上的高峰, 取得了世界领先的地位, 为国争了光.现在离‘哥德巴赫猜想 1+1 问题’的证明只有一步之远了.我们要像陈景润叔叔那样从小认真学习数学, 打好扎实基础, 长大了当个数学家.争取登上‘哥德巴赫猜想’的顶峰, 摘下这颗明珠.(

  • 共2页
  • 1

相关阅读